Darboux Integrability and Reversible Quadratic Vector Fields
نویسندگان
چکیده
منابع مشابه
Darboux theory of integrability for a class of nonautonomous vector fields
To decide when a differential system is integrable or not is one of the hardest problems of the theory of differential equations. The existence and the calculus of first integrals are in general a difficult problem. Many techniques have been applied in order to construct first integrals, such as Lie symmetries, Noether symmetries, the Painlevé analysis, the use of Lax pairs, the Darboux method,...
متن کاملDarboux Integrals for Schrödinger Planar Vector Fields via Darboux Transformations
In this paper we study the Darboux transformations of planar vector fields of Schrödinger type. Using the isogaloisian property of Darboux transformation we prove the “invariance” of the objects of the “Darboux theory of integrability”. In particular, we also show how the shape invariance property of the potential is important in order to preserve the structure of the transformed vector field. ...
متن کاملOn the Integrability of quasihomogeneous and Related Planar Vector Fields
In this work we consider planar quasihomogeneous vector fields and we show, among other qualitative properties, how to calculate all the inverse integrating factors of such C systems. Additionally, we obtain a necessary condition in order to have analytic inverse integrating factors and first integrals for planar positively semi-quasihomogeneous vector fields which is related with the existence...
متن کاملInverse Problems in Darboux’ Theory of Integrability
The Darboux theory of integrability for planar polynomial differential equations is a classical field, with connections to Lie symmetries, differential algebra and other areas of mathematics. In the present paper we introduce the concepts, problems and inverse problems, and we outline some recent results on inverse problems. We also prove a new result, viz. a general finiteness theorem for the ...
متن کاملRelationships between Darboux Integrability and Limit Cycles for a Class of Able Equations
We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2005
ISSN: 0035-7596
DOI: 10.1216/rmjm/1181069627